



# **AIRS PROJECT OVERVIEW**

**AND** 

**LAUNCH READINESS STATUS** 

**13 February 2002** 

Tom Pagano
AIRS Deputy Project Manager





## **AIRS PROJECT PARTICIPATION**



- AIRS is the Atmospheric Infrared Sounder
- Sponsored by NASA Office of Earth Science
- Managed by JPL, NASA, California Institute of Technology
- Instrument built by BAE Systems in Lexington Ma.
- Science Participants include
  - · NASA JPL, GSFC, LaRC
  - NOAA/NESDIS
  - · MIT/LL
  - · ECMWF
  - · UMBC, UW/SSEC, UCSB
  - and many others



# AQUA SPACECRAFT NEARLY READY FOR SHIP TO WTR





AIRS ON AQUA S/C

- AIRS will fly on the Earth Observing System (EOS)
   "Aqua" spacecraft
- Aqua to be launched from Vandenburg April 18, 2002
- Status
  - · PSR February 5-6, 2002
  - · Ship to WTR Feb 22, 2002
- Orbit: 705 km, polar sun synchronous, ascending 1:30 PM ect
- Companion instruments
  - · AMSR-E
  - **AMSU-A** (Advanced Microwave Sounding Unit A)
  - **HSB** (Humidity Sounder for Brazil)
  - · CERES
  - · MODIS



### AIRS IS READY FOR LAUNCH





#### **AIRS** Requirements

- Instantaneous Field of View: 1.1° x 0.6° (13.5 km x 7.4 km)
- Scan Range: ±49.5°
- IR Spectral Range:  $3.74-4.61 \mu m$ ,  $6.2-8.22 \mu m$ ,  $8.8-15.4 \mu m$
- IR Spectral Resolution: ≈ 1200 (□/□□)
- Number of IR Channels: 2378 IR
- VIS Channels: 4 (0.41-0.44  $\mu$ m, 0.58-0.68  $\mu$ m, 0.71-0.92  $\mu$ m, 0.49-0.94  $\mu$ m)
- VIS Spatial Resolution: 0.14° (1.7 km)
- Mass: 177Kg, Power: 256 Watts, Life: 5 years (7 years goal)

#### •Two thermal vacuum cycles at BAE Systems

- Delivered to Spacecraft in November 1999
  - Environmental Testing
  - Comprehensive Functional and **Performance Testing**
  - ·All command sequences and databases demonstrated end-to-end
- AIRS Launch Readiness Review
  - ·Jan. 29, 2002
  - Independent Review Board
- No Liens on AIRS Hardware
  - ·All P/FRs resolved



# POST-LAUNCH OPERATIONS READY FOR LAUNCH



- AIRS operations manual complete
- In-Flight operational timeline developed
- All procedures and databases complete
  - SCIF 4 Run for Record Scheduled 2/7/02
- Critical operations constraints and rules defined
- Anomaly investigation plan in place
- Operation teams defined: AIRS, AMSU, HSB
- Tested every command and every procedure we anticipate using in orbit. No Liens.



### **AIRS CALIBRATION READY**



- Radiometric linearity and OBC BB calibration completed with accuracies less than ±0.2K at 265K for all channels
- Spectral accuracies better than 1% Δ□
- Channel spectra in-flight characterization approach verified
- All in-flight special calibration sequences (SCS) (11) demonstrated at TRW
- L1B calibrated radiances algorithms and software in final verification
- Long term calibration and high rate telemetry trending software in place



# SCIENCE DATA PROCESSING SYSTEM READY FOR LAUNCH



- Launch-ready SPS software has been delivered to GSFC DAAC
- Data from TRW warm test and TVAC tests Processed at JPL TDS with no major problems
- Launch-ready PGEs most recently tested during MOSS 6 testing at JPL TDS and GSFC DAAC
- Operational Loading Test in TDS underway
- A schedule exists for post-launch delivery of production level code to the GSFC DAAC



# **AMSU/HSB SUITE READY FOR LAUNCH**



#### AMSU-A1



**AMSU-A2** 



#### **HSB**



- · Instruments Ready
  - No Hardware Liens Per Aerojet and INPE
  - · Calibration Complete
- Science Data Processing System Ready
  - Demonstrated using sim and T/V data
- QA Post Processing and Analysis Launch Ready



### **CONCLUSIONS**



# AIRS Experiment ready for Launch

- · Instrument functioning extremely well; no hardware liens.
- Instrument well characterized from pre-launch TVAC testing
- Passed all Environmental Tests
- Performed Flawlessly in Thermal Vacuum at TRW
- Exceptional performance and sensitivity in flight like environment; no influence from the spacecraft (WYSIWYG)
- Operations procedures developed and fully tested to safely activate and operate the instruments
- Science Data Processing System has been delivered to GSFC DAAC and flow testing has been demonstrated.
- Acknowledgements
- For more information see www-airs.jpl.nasa.gov





# **BACKUP**

10 6/24/03



## AIRS/AMSU/HSB DATA FLOW







## **AIRS TECHNOLOGY**



- IR Spectrometer: Multi-Aperture Array Grating Spectrometer
- Spectrometer Cooling to 155K with Two-Stage Passive Radiator
- Focal Plane Cooling using Single Stage Stirling Pulse Tube, Redundant
- FPAs: PV HgCdTe to 13.7  $\mu$ m, PC HgCdTe to 15.4  $\mu$ m
- On-Board Calibration Views: Space, Blackbody, Parylene (Spectral), 3 VIS/NIR Lamps
- · Electronics Architecture:
  - · Dual Redundant/µ-processor controlled
  - On-board radiation circumvention signal processing







